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Background &  Motivation

Source: https://github.com/facebookresearch/SparseConvNet  

[1] Graham, B. and van der Maaten, L., 2017. Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307.

https://github.com/facebookresearch/SparseConvNet
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Background &  Motivation: Sparse CNN

• Sparse CNN for spatially sparse data

. octree: O-CNN [1],  OctNet [2]

. coordinates and features [4]

• CNN  with sparse parameters

. parameters are mostly zero after pruning

. densely trained parameters have a lot of redundancy [3]

. increase parameter sparsity without substantially decrease in accuracy

[1] Wang, P.S., et al. O-cnn: Octree-based convolutional neural networks for 3d shape analysis. In TOG 2017. 

[2] Riegler, G., et al.  Octnet: Learning deep 3d representations at high resolutions. In CVPR 2017.

[3] Liu, B.et al. Sparse convolutional neural networks. In  CVPR 2015.

[4] Choy, C., et al. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In CVPR 2019.

compact octree representation of 3D shapes (source: 

https://griegler.github.io/papers/octnet_slides.pdf )

to get rid of the dominant empty points that do not  carry 

valid information of the target

https://griegler.github.io/papers/octnet_slides.pdf
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Background & Motivation: Skull reconstruction

Skull shape completion:  automatically complete an incomplete skull

Skull shape-super-resolution: given a coarse skull, reconstruct a high-resolution skull
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Method

Minkowski Engine

o  Convolution defined on specified points (left) instead of 

on the entire voxel grid (right) 

Dense convolution Sparse convolution

Source: https://nvidia.github.io/MinkowskiEngine/overview.html 

for sparse binary volumes of static data:

coordinates of non-zero voxels:

associated feature vectors  (voxel values):

https://nvidia.github.io/MinkowskiEngine/overview.html
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Method

Minkowski Engine

MRI skull dataset                                                         CT skull dataset

o  Convolution defined on non-empty points: comparison of the non-empty 

voxel number and total voxel number on the skull datasets 

. Overall data memory occupancy  (y-axis) grows cubically wrt. Image resolution (x-axis)

. Binary skull images were stored as int8 (MRI) and int32 (CT)
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Method

Minkowski Engine

o  Convolution defined on non-empty points: comparison of memory  usage  

and computational complexity (floating point operations)

training:
• Input and ground truth image batches
• Intermediate layers‘ output
• Network parameters
• Back-propogation: errors, gradients
• Optimizers 

inference:
• Input image batches
• Intermediate layers‘ output
• Network parameters

1. Output size of the intermediate layer i:

s, p, Ks: size of stride, padding  and kernel

2. Floating point operations: product of and in and out number of channels 

Overall GPU memory usage measurement:  query GPU memory 

occupancy at 50-millisecond intervals for N_train epochs (batch size=1)
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Method

Minkowski Engine

oSparse CNN for shape completion and super-resolution 

• Auto-encoder architecture
• Sparse convolutional layers
• ch  is the list of channel numbers  of each  layer 

* stride 2

  bold: transposed generative layers 

convolutions at coordinate D:

feature vector at coordinate D:  
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Method

Minkowski Engine

oCoordinate mapping

Source: https://nvidia.github.io/MinkowskiEngine/overview.html 

in

Hash table  (FNV64-1A)

out

Hash table  (FNV64-1A)

Hash keys Hash keys 

https://nvidia.github.io/MinkowskiEngine/overview.html
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Method
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Method
Minkowski Engine

o Sparse CNN shape completion (sc) and super-resolution (sr)

[1] Gwak, J., Choy, C. et al. Generative sparse detection networks for 3d single-shot object detection. In ECCV 2020

[2] Li, J., Pepe, A., et al. Learning to Rearrange Voxels in Binary Segmentation Masks for Smooth Manifold Triangulation. arXiv 2021.

transposed generative 
convolution [1]

non-zero voxels partially rearranged [2]
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Experiments & Results
o Shape completion on  the MRI skull dataset

Dice  similarity Coefficient Reconstruction error (%)
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Experiments & Results

o Shape completion on  the CT skull dataset

• 0.9903 DSC – Current state of the art in 

skull shape completion! 

• increasing model complexity increases 

prediction accuracy.

Dice  similarity Coefficient

Reconstruction error (%)

(a) 64 (ch1)  (b) 64 (ch2) (c) 128 (ch1)  (d) 128 (ch2) (e) 256       (f) 512

ch1 (0.435M params)

ch2 (18.14M params)
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Experiments & Results
o Memory usage comparison Memory wrt. resolution

Memory wrt. batch size

• sparse CNN inference: memory usage 

grows linearly wrt. Image res. 
• sparse CNN training: memory usage 

grows linearly at res. 256 and below and 

subquadruply at res. 512 
• x40 increase in parameters leads to less 

than x2 memory usage for sparse CNN
• training sparse CNN at full resolution is 

reasonably fast,  in contrast to dense  

CNN.

ch1 (0.435M params)

ch2 (18.14M params)
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Experiments & Results

o Super-resolution on the CT skull dataset
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Experiments & Results

o Super-resolution on the CT skull dataset

(a) 64 → 128 (b)64 → 256 (c) 64 → 512 (d) 64 ⇒ 128 (e) 64 ⇒
256 (f) 64 ⇒ 512 (g) 128 → 256 (h) 128 ⇒ 256 (i) shape 

completion at 256. →  super-resolution ⇒ interpolation

Dice  similarity Coefficient

Reconstruction error (%)

64 → 256 128 → 256 completion 256

• the sparse CNN model is better at the 

shape completion task 
• super-resolution with smaller gaps has 

better results

signed distance wrt. gt
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Experiments & Results

o Implant generation at resolution 512x512xZ

[1] Ellis, D.G. and Aizenberg, M.R., 2020, October. Deep Learning Using Augmentation via Registration: 1st Place Solution to the 

AutoImplant 2020 Challenge. In Cranial Implant Design Challenge (pp. 47-55). Springer, Cham.

• ensemble of four models
• two V100 GPUs (32 GB each)
• downsampled
• massive data augmentation: 

10000 training samples

[1] 
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Experiments & Results

o Segmentation of sparse medical images

heart (green), aorta(yellow), trachea (blue) and esophagus (red) from the 

SegTHOR challenge (https://competitions.codalab.org/competitions/21145 )

• resolution: 512x512xZ
• workflow: dense CNN segmentation 

(128^3) – sparse CNN super-

resolution (512x512xZ)
• organ masks voxel occupancy rates 

are very low

Table S1.Voxel occupancy rate (VOR) and 

the memory usage (in GB) during training 

and inference for different organs.

https://competitions.codalab.org/competitions/21145
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Experiments & Results

o Segmentation of sparse medical images

128^3

512^2xZ

512^2xZ
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Conclusions

o Sparse CNN outperforms dense CNN wrt. speed, performance, memory and 

computation efficiency, on sparse problems

o Minkowski Engine (ME) was a general-purpose library capable of processing 4D 

spatio-temporal data. We have showed its applicability on sparse binary volumes 

of static data (skulls, organ masks, etc), on different medical image analysis 

tasks

o In ME or other sparse CNN libraries/methods, voxel coordinates are involved in 

convolution computations. Hash table is generally used to prevent querying the 

coordinates from slowing down convolutions  
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Kroviakov, A., Li, J. and Egger, J., 2021, October. Sparse Convolutional 

Neural Network for Skull Reconstruction. In Cranial Implant Design 

Challenge (pp. 80-94). Springer, Cham.
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Jianning.Li@uk-essen.de

mailto:Jianning.Li@uk-essen.de
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Thank You
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