Sparse Convolutional Neural Networks for Medical Image Analysis

Jianning Li

Background & Motivation

- Medical Images are Large and modern GPUs are still memory-constrained . typical resolution: $512 \times 512 \times Z$
 - . typical desktop GPU memory: 6 ~ 32 GB
- Some medical Images are spatially sparse with very low voxel occupancy rate (VOR)
 - . skull: up to approx. 10%
 - . segmentation masks of human organs: as low as 0.04%
 - . dense convolution: number of non-empty points grow rapidly with each layer [1]
- Convolutions that operate only on non-empty voxels?

Source: https://github.com/facebookresearch/SparseConvNet

[1] Graham, B. and van der Maaten, L., 2017. Submanifold sparse convolutional networks. *arXiv preprint arXiv:1706.01307*.

Background & Motivation: Sparse CNN

- Sparse CNN for spatially sparse data
 - . octree: O-CNN [1], OctNet [2]
 - . coordinates and features [4]

to get rid of the dominant empty points that do not carry valid information of the target

compact octree representation of 3D shapes (source: https://griegler.github.io/papers/octnet_slides.pdf)

- CNN with sparse parameters
 - . parameters are mostly zero after pruning
 - . densely trained parameters have a lot of redundancy [3]
 - . increase parameter sparsity without substantially decrease in accuracy

[1] Wang, P.S., et al. O-cnn: Octree-based convolutional neural networks for 3d shape analysis. In TOG 2017.

[2] Riegler, G., et al. Octnet: Learning deep 3d representations at high resolutions. In CVPR 2017.

[3] Liu, B.et al. Sparse convolutional neural networks. In CVPR 2015.

[4] Choy, C., et al. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In CVPR 2019.

Background & Motivation: Skull reconstruction

Skull images are large (512 × 512 × Z), binary and spatially sparse (VOR ~10%)
 . MRI (top row) and CT (bottom row) skull images at different resolutions

Skull shape completion: automatically complete an incomplete skull **Skull shape-super-resolution:** given a coarse skull, reconstruct a high-resolution skull

Minkowski Engine

O Convolution defined on specified points (left) instead of on the entire voxel grid (right)

Source: https://nvidia.github.io/MinkowskiEngine/overview.html

for sparse binary volumes of static data:

$$\mathcal{C}_{in} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \dots & \dots & \dots \\ x_N & y_N & z_N \end{bmatrix}, \mathcal{F}_{in} = \begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix}$$

coordinates of non-zero voxels:

$$\mathcal{C}_{in} \in \mathbb{Z}^{N \times 3}$$

associated feature vectors (voxel values):

$$\mathcal{F}_{in} \in \mathbb{R}^{N \times 1}$$

Minkowski Engine

^O **Convolution defined on non-empty points**: comparison of the non-empty voxel number and total voxel number on the skull datasets

- . Overall data memory occupancy (y-axis) grows cubically wrt. Image resolution (x-axis)
- . Binary skull images were stored as int8 (MRI) and int32 (CT)

Minkowski Engine

Convolution defined on non-empty points: comparison of memory usage and computational complexity (floating point operations)

training:

- Input and ground truth image batches
- Intermediate layers' output
- Network parameters
- Back-propogation: errors, gradients
 Optimizers

inference:

- Input image batches
- Intermediate layers' output Network parameters
- 1. Output size of the intermediate layer i: $N_{f^i} = \frac{1}{s}(N_{f^{i-1}} + 2p Ks)$

s, p, Ks: size of stride, padding and kernel

2. Floating point operations: product of Nfi Ks and in and out number of channels

Overall GPU memory usage measurement: query GPU memory occupancy at 50-millisecond intervals for N_train epochs (batch size=1)

Minkowski Engine

 $^{\rm O}$ Sparse CNN for shape completion and super-resolution

Encoder			Decoder		
C^{in}	C^{out}	Ks	C^{in}	C^{out}	Ks
1	ch[0]	3	*ch[6]	ch[5]	4
*ch[0]	ch[1]	2	ch[5]	ch[5]	3
ch[1]	ch [1]	3	ch[5]	1	1
*ch[1]	ch[2]	2	*ch[5]	ch[4]	2
ch[2]	ch[2]	3	ch[4]	ch[4]	3
*ch[2]	ch[3]	2	ch[4]	1	1
ch[3]	ch[3]	3	*ch[4]	ch[3]	2
*ch[3]	ch[4]	2	ch[3]	ch[3]	3
ch[4]	ch[4]	3	ch[3]	1	1
*ch[4]	ch[5]	2	*ch[3]	ch[2]	2
ch[5]	ch[5]	3	ch[2]	ch[2]	3
*ch[5]	ch[6]	2	ch[2]	1	1
ch[6]	ch[6]	3	*ch[2]	ch[1]	2
-	-	-	ch [1]	ch[1]	3
-	-	-	ch [1]	1	1
-	-	-	*ch[1]	ch[0]	2
-	-	-	ch [0]	ch[0]	3
-	-	-	ch [0]	1	1
-	-	-	ch [0]	1	1
-	-	-	sigmoid		

* stride 2

bold: transposed generative layers

- Auto-encoder architecture Sparse convolutional layers ch is the list of channel numbers of each layer

convolutions at coordinate D:

$$\mathcal{F}_{in}^{i+1}(D') = \sum w^i \mathcal{F}_{in}^i(D) + b_i$$

feature vector at coordinate D:

$$\mathcal{F}_{in}^i \in \mathbb{R}^{C_{i-1}^{out}} \quad D \in \mathbb{Z}^3$$

Your Name

Minkowski Engine

Source: https://nvidia.github.io/MinkowskiEngine/overview.html

4:
$$F_{\text{tmp}} \leftarrow F_{\text{tmp}} + [F_{O_{i}[1]}^{o}, F_{O_{i}[2]}^{o}, ..., F_{O_{i}[n]}^{o}]$$

5: $[F_{O_{i}[1]}^{o}, F_{O_{i}[2]}^{o}, ..., F_{O_{i}[n]}^{o}] \leftarrow F_{\text{tmp}}$

6: end for

template image

[1] Li, J., Pepe, A., Gsaxner, C., Jin, Y. and Egger, J., 2021. Learning to Rearrange Voxels in Binary Segmentation Masks for Smooth Manifold Triangulation. *arXiv preprint arXiv:2108.05269*.

Minkowski Engine

[1] Gwak, J., Choy, C. et al. Generative sparse detection networks for 3d single-shot object detection. In ECCV 2020
[2] Li, J., Pepe, A., et al. Learning to Rearrange Voxels in Binary Segmentation Masks for Smooth Manifold Triangulation. arXiv 2021.

^O Shape completion on the MRI skull dataset

ch1 (0.435M params) ch2 (18.14M params)

- 0.9903 DSC Current state of the art in skull shape completion!
- increasing model complexity increases prediction accuracy.

Memory	wrt.	resolution	I
--------	------	------------	---

cat. $\setminus I_s$	64	128	256	512
sparse train	1.5119	1.6256	2.7341	11.3049
sparse test	1.4519	1.5097	1.8905	2.7993
dense train	1.6543	1.9043	4.8145	-
dense test	1.6699	1.8184	2.6934	-

Memory wrt. batch size					
$ch \setminus bat$	tch 2	3	4	5	6
ch1	1.511	9 1.5494	1.5780	1.6164	1.6557
ch2	1.907	'1 -	2.0054	-	-
7	8	9	10	16	32
1.6867	1.7151	1.7950	1.8459	2.1180	3.8395
-	2.3729	2.3232	2.5116	-	-

- sparse CNN inference: memory usage grows linearly wrt. Image res.
- sparse CNN training: memory usage grows linearly at res. 256 and below and subquadruply at res. 512
- x40 increase in parameters leads to less than x2 memory usage for sparse CNN
- training sparse CNN at full resolution is reasonably fast, in contrast to dense CNN.

Place, date

 $^{\rm O}$ Super-resolution on the CT skull dataset

○ Implant generation at resolution 512x512xZ

[1] Ellis, D.G. and Aizenberg, M.R., 2020, October. Deep Learning Using Augmentation via Registration: 1st Place Solution to the AutoImplant 2020 Challenge. In Cranial Implant Design Challenge (pp. 47-55). Springer, Cham.

Your Name

Place, date

^O Segmentation of sparse medical images

heart (green), aorta(yellow), trachea (blue) and esophagus (red) from the SegTHOR challenge (<u>https://competitions.codalab.org/competitions/21145</u>)

- resolution: 512x512xZ workflow: dense CNN segmentation (128^3) – sparse CNN superresolution (512x512xZ)
- organ masks voxel occupancy rates are very low

organ	train	test	VOR (%)
aorta	2.05	1.75	0.20
heart	2.46	2.38	0.79
trachea	1.73	1.64	0.04
esophagus	1.77	1.64	0.05

Table S1.Voxel occupancy rate (VOR) and the memory usage (in GB) during training and inference for different organs.

^O Segmentation of sparse medical images

Conclusions

- O Sparse CNN outperforms dense CNN wrt. speed, performance, memory and computation efficiency, on sparse problems
- O Minkowski Engine (ME) was a general-purpose library capable of processing 4D spatio-temporal data. We have showed its applicability on sparse binary volumes of static data (skulls, organ masks, etc), on different medical image analysis tasks
- O In ME or other sparse CNN libraries/methods, voxel coordinates are involved in convolution computations. Hash table is generally used to prevent querying the coordinates from slowing down convolutions

Kroviakov, A., Li, J. and Egger, J., 2021, October. *Sparse Convolutional Neural Network for Skull Reconstruction*. In Cranial Implant Design Challenge (pp. 80-94). Springer, Cham.

Automated implant design

Formulation

In comparison to current practice of cranial implant design:

- low cost & fast
- in operation room (in-OR) design & manufacturing
- no secondary surgeries required (cranioplasty can be performed hours after craniectomy)

- 3D shape completion, shape learning and modeling
- CNN, classic image processing

Problems

Generalizability

- generalize to various defect shapes
- generalize to various skull shapes
- generalize to clinical cases

Sparse problems

- skull image are large (512*512*Z)
- desktop GPU memory is limited
- training is slow

o <u>Clinical utility</u>

- transfer synthetically trained model to clinical data
- quantify experts' evaluation criteria
- user interface (<u>https://www.youtube.com/watch</u> ?v=pt-jw8nXzgs)

Jianning.Li@uk-essen.de

Thank You